

Turkish Journal of Agriculture - Food Science and Technology

Available online, ISSN: 2148-127X www.agrifoodscience.com, Turkish Science and Technology

Genotyping via Sequence Related Amplified Polymorphism Markers in *Fusarium culmorum*

Işıl Melis Zümrüt¹, Berna Tunalı², Bayram Kansu³, Gülşen Uz¹, Emre Yörük^{1*}, Fatih Ölmez⁴, Ayşegül Sarıkaya^{1,5}

¹Department of Molecular Biology and Genetics/Faculty of Arts and Science, Yeni Yüzyil University, 34034 İstanbul, Turkey ²Department of Plant Pathology/Faculty of Agriculture, Ondokuz Mayıs University, 55100 Samsun, Turkey ³Animal and Plant Production Department/Vocational School, Ondokuz Mayıs University, 55100 Samsun, Turkey ⁴Biotechnology Department/Field Crop Central Research Institute, 06170 Ankara, Turkey ⁵Department of Medical Biology and Genetics/Medical Faculty, Yeni Yüzyıl University, 34034 İstanbul, Turkey

ARTICLE INFO	A B S T R A C T
Research Article Received 15 July 2017	<i>Fusarium culmorum</i> is predominating causal agent of head blight (HB) and root rot (RR) in cereals worldwide. Since <i>F. culmorum</i> has a great level of genetic diversity and the parasexual stage is assumed for this phytopathogen, characterization of isolates from different regions is significant step in food safety and controlling the HB. In this study, it
Accepted 11 December 2017	was aimed to characterize totally 37 F. culmorum isolates from Turkey via sequence
Keywords: Fusarium culmorum Genetic diversity MAT-1 MAT-2 PCR	related amplified polymorphism (SRAP) marker based genotyping. <i>MAT-1/MAT-2</i> type assay was also used in order to reveal intraspecific variation in <i>F. culmorum. MAT-1 and MAT-2</i> specific primer pairs for mating assays resulted in 210 and 260 bp bands, respectively. 11 of isolates were belonged to <i>MAT-1</i> type whereas 19 samples were of <i>MAT-2</i> . Remaining 7 samples yielded both amplicons. Totally 9 SRAP primer sets yielded amplicons from all isolates. Genetic similarity values were ranged from 39 to 94.7%. Total band number was 127 and PCR product sizes were in the range of 0.1-2.5 kb. Amplicon numbers for individuals were ranged from 1 to 16. According to data
*Corresponding and Main Author:	obtained from current study, SRAP based genotyping is powerful tool for supporting the
E-mail: emre.yoruk@yeniyuzyil.edu.tr	data obtained from investigations including phenotypic and agro-ecological characteristics. Findings showed that SRAP-based markers could be useful in <i>F</i> . <i>culmorum</i> characterization.

DOI: https://doi.org/10.24925/turjaf.v6i2.145-149.1423

Introduction

Head blight (HB) and root rot (RR) are diseases in economically important cereals including wheat and barley worldwide. The diseases are caused by more than ten Fusarium species. Fusarium culmorum, a single phylogenetic species, is a major causal agent of HB in many agro-ecological regions located in West-Asia, Europe and America (Obanor et al., 2010; Pasquali et al., 2016). Diseases caused by F. culmorum resulted in severe economic losses due to decrease in crop quality and quantity (Smiley et al., 2005; Miedaner et al., 2008). Moreover, diseased kernels are contaminated with trichothecenes, zearalenon and fusarins of which are harmful to both humans and animals. Chronic and fatal mycotoxicosis are caused by these mycotoxins and estrogenic effects and protein synthesis inhibition are most famous of those (Desjardins and Proctor, 2007). Thus, struggling with F. culmorum is crucial in management of HB and RR diseases.

Several strategies are present in order to struggle with adverse effects caused by F. culmorum. Usage of disease resistant cereal cultivars, antagonistic and antimicrobial approaches and gene silencing/genetic manipulations are some of them (Arslan and Baykal, 2002; Wisniewska and Kowalczyk, 2005; Scherm et al., 2011). However, these strategies do not provide an effective and global success in disease management. Reliable, stable and precise strategy which can overcome the F. culmorum adverse effects is associated with comprehensive characterization of F. culmorum populations worldwide. F. culmorum is anamorph species with no known sexual stage. Mating type is controlled via MAT1-1 or MAT1-2 alleles (Kerényi et al., 2004). However, parasexual status is suggested by Miedaner et al. (2001, 2008). This suggestion was also supported by mating type analysis by location of two idiomorphic alleles on a single isolates genome (Obanor et al., 2010, Çepni et al., 2013; Albayrak et al., 2016).

Detailed characterization of *F. culmorum* is in need of providing powerful disease management worldwide. Polymerase chain reaction (PCR) based genotyping strategies can provide supportive output associated with morphological and phenotypic diversity characteristics.

PCR based DNA marker methods present reliable, reproducible and fast assays in characterization of heterothallic F. culmorum species. Several strategies including random amplified polymorphic DNA, inter simple sequence repeats and simple sequence repeats, have been currently used in F. culmorum genotyping (Miedaner et al., 2001; Gurel et al., 2010; Irzykowska et al., 2013; Albayrak et al., 2016). Sequence related amplified polymorphism (SRAP) method uses two primers with nucleotide sequence of conserved coding sites throughout the genomes. The method is powerful tool for genetic mapping and genetic diversity analysis (Li and Quiros, 2001; Irzykowska et al., 2013; Mahmoud, 2016). Moreover reliable and supportive output can be provided for making association between phenotypic characteristics (aggressiveness, linear growth rate etc.) and genotypes. In this study, characterization of F. culmorum isolates from different agro-ecological regions of Turkey is carried out. For this purpose, genotypic assays of mating type differentiation and SRAP based characterization were maintained in this study.

Materials and Methods

Fungal Material and DNA extraction

37 *F. culmorum* isolates obtained from diseased wheat and barley kernels of different regions in Turkey were used in this study (Table 1). Each isolates were identified at species level via morhological characteristics and species-specific SCAR markers formerly by Yörük et al. (2016). Fungal isolates were grown at 25°C on Czapek Dox Agar (CDA). 7-day-old cultures were used in extraction of genomic DNA. That was isolated by using slightly modified version of the sodium dodecyl sulphatebased protocol of Niu et al. (2008). Quantitative and qualitative analyzes of genomic DNAs were examined by 1% agarose gel electrophoresis and spectrophotometer (Shimadzu, Japan). DNAs were photographed via gel visualization system under UV light (Maestrogen, USA).

Mating Type Analysis

Primer pairs, targeting *MAT1-1* specific α box and *MAT2* specific HMG box, developed by Kerényi et al. (2004) were used in mating type characterization of *F. culmorum* isolates (Table 2). PCR mixture was conducted on 25 µL including 25 ng genomic DNA, 1 X PCR buffer, 2.5 mM MgCl₂, 0.25 mM of each dNTP's, 0.25 µM for each primer, 1 U *Taq* DNA polymerase (Solis Bio Dyne, Estonia). The cycling conditions were as the same as reported by Kerényi et al. (2004). PCR bands were analyzed on 1.5% agarose gels as given before.

SRAP Assays

Totally 9 primer set combinations were formed using 3 forward and 3 reverse primers (see Table 2). PCR mixture was conducted on 25 μ L. The mixture was containing components as follows; 50 ng genomic DNA, 1 X PCR buffer, 2.5 mM MgCl₂, 0.2 mM of each dNTP's,

 $0.4 \ \mu$ M for each primer, 1 U *Taq* DNA polymerase (Solis Bio Dyne, Estonia). The cycling conditions were as the same protocol provided by Zhang et al. (2014). PCR bands were visualized on agarose electrophoresis as described before.

Statistical Analysis

SRAP bands were scored according to their presence and absence as '1'' and '0'', respectively. A similarity matrix was formed using Nei-Li's coefficient (Nei and Li, 1979). A dendrogram was generated via the unweighted pair group method with arithmetic average algorithm (UPGMA) in MVSP 3.1 software (Kovach, United Kingdom).

Results and Discussion

The *Fusarium culmorum* isolates used in this study were characterized by their morphological characteristics. Fungal isolates were successfully grown on CDA medium. Genomic DNAs with high quality ($A_{260/280}$ = ~1.8) were isolated from 7-day-old cultures in the amount of 0.5-3µg/µL.

After DNA extraction, 37 *F.culmorum* isolates were subjected to mating type analysis. According to the mating type analysis, 11 isolates yielded 210 bp amplicon corresponding to *MAT-1* (data not shown), 19 isolates were belonged to *MAT-2* type since their mating type analysis resulted in 260 bp (Figure 1). The remaining seven samples corresponded to both *MAT-1* and *MAT-2* alleles.

Genetic variation was investigated among 37 F. culmorum isolates using Sequence Related Amplified Polymorphism (SRAP) technique. For this purpose, 9 SRAP primer combinations (ME1-EM1, ME1-EM3, ME1-EM6, ME3-EM1, ME3-EM3, ME3-EM6, ME5-EM1, ME5-EM3 and ME5-EM6) were used. In SRAP analysis, each primer sets yielded amplicons in all isolates (Figure 2). PCR product sizes were in the range of 0.1-2.5 kb. Totally 114 markers were obtained from 9 primer sets. Minimum and maximum band numbers for individuals were as 1 to 16, respectively. Even if majority of isolates from related and close agro-ecological regions were coclustered in the same sub-clusters. Some isolates were located with isolates from different regions at same subcluster meaning that heterogeneity was present Turkish Fusarium isolates.

The dendrogram constructed using the SRAP data shows that the isolates to be divided into two divisions (Figure 3). Each cluster also included two sub-divisions. In SRAP analysis, the similarity matrix among 37 isolates of *F. culmorum* were determined by Nei and Li (1979) coefficient (data not shown). The genetic similarity rate was ranged from a minimum value of 39 % to a maximum value of 94.7%. The highest similarity rate (94.7%) was observed between F4 isolate and F12 isolate. Both isolates were originating from Marmara Region. The lowest similarity rate was observed between *F. culmorum* 14-1 isolate and 19F. While *F. culmorum* 14-1 isolate was obtained from diseased barley kernels in Sivas city, *F. culmorum* 19 isolate of wheat was originated from Eskisehir.

ahle	1	Isolates	nsed	in	thic	study	
aure	1	isolates	uscu	111	uns	Sluuv	

Table 1 Isolates used in this study					
Isolate	Year	Host	Region	Chemotype	Mating type
F1	2006	Wheat	Marmara	DON + 3-AcDON	MAT1-1
F2	2006	Wheat	Marmara	DON + 3-AcDON	MAT1-2
F3	2006	Wheat	Konya	DON + 3-AcDON	MAT1-2
F4	2006	Wheat	Marmara	DON + 3-AcDON	MAT1-2
F10	2006	Wheat	Bilecik	DON + 3-AcDON	MAT1-1
F12	2006	Wheat	Balıkesir	DON + 3-AcDON	MAT1-2
F14	2006	Wheat	Bilecik	DON + 3-AcDON	MAT1-2
F15	2006	Wheat	Sinop	DON + 3-AcDON	MAT1-1
F16	2006	Wheat	Konya	DON + 3-AcDON	MAT1-1
F17	2006	Wheat	Konya	DON + 3-AcDON	MAT1-1
F19	2006	Wheat	Konya	DON + 3-AcDON	MAT1-1
09-1TR	2009	Wheat	Kastamonu	DON + 3-ADON	MAT1-1/2
15-3TR	2015	Barley	Tekirdağ	DON + 3-ADON	MAT1-2
F20	2006	Wheat	Bilecik	DON + 3-AcDON	MAT1-2
F21	2006	Wheat	Uşak	DON + 3-AcDON	MAT1-1
F24	2006	Wheat	Konya	DON + 3-AcDON	MAT1-2
15-4TR	2015	Wheat	Edirne	DON + 3-ADON	MAT1-2
17F	2009	Wheat	Ankara	DON + 3-AcDON	MAT1-1/2
18F	2010	Wheat	Eskişehir	DON + 3-AcDON	MAT1-1
19F	2010	Wheat	Eskişehir	DON + 3-AcDON	MAT1-1/2
20F	2011	Barley	Afyon	DON + 3-AcDON	MAT1-1/2
14-1TR	2014	Barley	Sivas	DON + 3-ADON	MAT1-1/2
14-2TR	2014	Wheat	Samsun	DON + 3-ADON	MAT1-1/2
15-1TR	2015	Wheat	Tekirdağ	DON + 3-ADON	MAT1-1/2
14-3TR	2014	Wheat	Yozgat	DON + 3-ADON	MAT1-1
15-2TR	2015	Wheat	Edirne	DON + 3-ADON	MAT1-2
8F	2009	Wheat	Ankara	DON + 3-AcDON	MAT1-2
9F	2008	Wheat	Isparta	DON + 3-AcDON	MAT1-1
10F	2007	Wheat	Samsun	DON + 3-AcDON	MAT1-2
11F	2009	Wheat	Çorum	DON + 3-AcDON	MAT1-2
13F	2008	Wheat	Konya	DON + 3-AcDON	MAT1-1
12-1TR	2012	Wheat	Konya	DON + 3-ADON	MAT1-2
09-2TR	2009	Wheat	Ankara	DON + 3-ADON	MAT1-2
14-9TR	2014	Barley	Sivas	DON + 3-ADON	MAT1-2
12F	2009	Wheat	Amasya	DON + 3-AcDON	MAT1-2
14-8TR	2014	Wheat	Amasya	DON + 3-ADON	MAT1-2
15-5TR	2015	Wheat	Edirne	DON + 3-ADON	MAT1-2

Table 2 Primers used this study.

Primer	5'-3' sequence	Target Region	Band size in kb
ME1	TGAGTCCAAACCGGATA		
EM3	GACTGCGTACGAATTGAC		
EM6	GACTGCGTACGAATTGCA	Conserved even	0225
ME3	TGAGTCCAAACCGGAAT	Collsel ved exoli	0.2-2.3
EM1	GACTGCGTACGAATTAAT		
ME5	TGAGTCCAAACCGGAAG		
FusALPHAfor	CGCCCTCTKAAYGSCTTCATG	MAT 1	0.21
FusALPHArev	GGARTARACYTTAGCAATYAGGGC	MAI-I	0.21
FusHMGfor	CGACCTCCCAAYGCYTACAT	MAT 2	0.26
FusHMGrev	TGGGCGGTACTGGTARTCRGG	MAI-2	0.20

According to the findings of the dendrogram, the Turkish F. culmorum isolates used in the study were clustered according to the geographical regions. In general, isolates from the same agro-ecological regions were co-clustered in the same sub-division. Moreover sub-division II included both wheat and barley phytopathogenic isolates, whereas sub-division I contained just wheat pathogens. Similarly, isolates with collection year between 2006-2009 included in subdivision I, while 2009-2015 isolates were belonged to sub-division II. In mating type analysis, it was also clear that isolates carrying two alleles are replaced in subdivision II. These findings showed that SRAP-based markers could be useful in detailed genotyping of F. culmorum isolates with different characteristics such as geographic region, host type and mating type.

Figure 1 *Mat1-2* profile of *F. culmorum* isolates. M: 100 bp DNA size marker (Thermo, USA), N: no template control

Figure 2 SRAP profiles of isolates by ME5/EM6 (A), ME5/EM1(B), ME1/EM3 (C), ME1/EM6 (D) M: 100 bp DNA markers, N: negative control

Figure 3 Dendogram showing genetic relatedness among *F. culmorum* isolates based on SRAP analysis

Conclusion

In this study, F. culmorum isolates, collected from diseased wheat and barley samples in different agroecological regions of Turkey, were subjected to genotyping analysis via mating type and SRAP markers. Findings obtained from both assays showed that isolates with similar and/or same characteristics investigated in this study were co-clustered in UPGMA-dendogram. Isolates with similar profiles could be evaluated in terms of practicing the similar disease control strategies. In this regard, SRAP based genotyping provide fast, reliable and reproducible results for detailed characterization of phytopathogenic isolates. 12 band per primer set was obtained from SRAP analysis which could be accepted as high level of polymorphism profile for a single primer set. Since genetic characterization of the quarantined phytopathogenic species F. culmorum is crucial in fight with HB and RR diseases, powerful tools to determine the genotypic variation among F. culmorum isolates are needed. SRAP results distinguished isolates according to their several important traits in this study. However further studies, including higher number of isolates and characteristics such as region and host type, should be carried out to get more knowledge about comprehensive genetic characteristics of this phytopathogenic species.

Acknowledgement

This study was supported by the Board of Regents of Istanbul Yeni Yüzyil University and TÜBİTAK 1090476 and 1110835 numbered projects.

References

- Arslan Ü, Baykal N. 2002. Kök ve kökboğazı fungal patojenlerine karşı bazı buğday çeşitlerinin reaksiyonları ve tohum koruyucu fungusitlerin *Fusarium culmorum* (w.g.sm.) sacc.'a etkisi. "Uludag Üniv. Ziraat Fak. Derg., 16: 69-76.
- Albayrak G, Yörük E, Gazdağlı A, Sharifnabi B. 2016. Genetic Diversity Among F. graminearum and F. culmorum Isolates Based on ISSR Markers. Arch. Biol. Sci., 68(2): 333-343. DOI:10.2298/ABS150630025A.
- Çepni E, Tunalı B, Gürel F. 2013. Genetic diversity and mating types of *Fusarium culmorum* and *Fusarium graminearum* originating from different agro-ecological regions in Turkey. J. Basic Microbiol., 53: 686-694. DOI:10.1002/jobm.201200066.
- Desjardins AE, Proctor RH. 2007. Molecular biology of *Fusarium* mycotoxins. Int. J. Food Microbiol., 119: 47-50. DOI:10.1016/j.ijfoodmicro.2007.07.024.
- Gürel F, Albayrak G, Diken O, Cepni E, Tunali B. 2010. Use of REP-PCR for genetic diversity analysis in *Fusarium culmorum*.
 J. Phytopathol., 158: 387-389. DOI: 10.1111/j.1439-0434.2009.01630.x.
- Irzykowska L, Bocianowski J, Baturo-Cieśniewska A. 2013. Association of mating-type with mycelium growth rate and genetic variability of *Fusarium culmorum*. Cent. Eur. J. Biol., 8(7): 701-711. DOI: 10.2478/s11535-013-0176-3.
- Kerényi Z, Moretti A, Waalwijk C, Olah B, Hornok L. 2004. Mating type sequences in asexually reproducing *Fusarium* species. Appl. Environ. Microbiol., 70: 4419-4423. DOI: 10.1128/AEM.70.8.4419-4423.2004.
- Li G, Quiros CF. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet., 103: 455-461. DOI: 10.1007/s001220100570.
- Mahmoud AF. 2016. Genetic Variation and Biological Control of *Fusarium graminearum* Isolated from Wheat in Assiut-Egypt. Plant Pathol. J., 32(2): 145-156. DOI:10.5423/PPJ.OA.09.2015.0201.
- Miedaner T, Schilling AG, Geiger HH. 2001. Molecular genetic diversity and variation for aggressiveness in populations of *Fusarium graminearum* and *Fusarium culmorum* sampled from wheat fields in different countries. J. Phytopathol., 149: 641-648. DOI: 10.1046/j.1439-0434.2001.00687.x.
- Miedaner T, Cumagun CJR, Chakraborty S. 2008. Population genetics of three important head blight pathogens *Fusarium* graminearum, *F. pseudograminearum* and *F. culmorum*. Plant Pathol. J., 156: 129-139. DOI: 10.1111/j.1439-0434.2007.01394.x.
- Niu C, Kebede H, Auld DL, Woodward JE, Burow G, Wright RJ. 2008. A safe inexpensive method to isolate high quality plant and fungal DNA in an open laboratory environment. Afr. J. Biotechnol., 7(16): 2818–2822.
- Obanor F, Erginbas-Orakci G, Tunali B, Nicol JM, Chakraborty S. 2010. Fusarium culmorum is a single phylogenetic species based on multilocus sequence analysis. Fungal Biol., 114: 753– 765. DOI: 10.1016/j.funbio.2010.07.001
- Pasquali M, Beyer M, Logrieco A, Audenaert K, Balmas V, Basler R, Boutigny AL, Chrpová J et al. 2016. A European Database of *Fusarium graminearum* and *F. culmorum* Trichothecene Genotypes. Front. Microbiol., 7: 1-11. DOI: 10.3389/fmicb.2016.00406.

- Smiley RW, Gourlie JA, Easley SA, Patterson LM. 2005. Pathogenicity of fungi associated with the wheat crown rot complex in Oregon and Washington. Plant Dis., 89: 949-957. DOI: 10.1094/PD-89-0949.
- Scherm B, Orru M, Balmas V, Spanu F, Azara E, Delogu G, Hammond TM, Keller NP, Migheli Q. 2011. Altered trichothecene biosynthesis in TRI6-silenced transformants of *Fusarium culmorum* influences the severity of crown and foot rot on durum wheat seedlings. Mol. Plant Pathol., 12(8): 759– 771. DOI: 10.1111/J.1364-3703.2011.00709.X.
- Wisniewska H, Kowalczyk K. 2005. Resistance of cultivars and breeding lines of spring wheat to *Fusarium culmorum* and powdery mildew. J. Appl. Genet., 46(1): 35-40.
- Yörük E, Tunali B, Kansu B, Ölmez F, Uz G, Zümrüt IM, Sarikaya A, Meyva G. 2016. Characterization of high-level deoxynivalenol producer *Fusarium graminearum* and *F. culmorum* isolates caused head blight and crown rot diseases in Turkey. J. Plant Dis. Protect., 123: 177–186. DOI: 10.1007/s41348-016-0027-y.
- Zhang Xu, Hong-xiang M, Yong-jin Z, Jin-cheng X, Jian-hua C, Gui-hong Y, Xiao-bo S, Lei W. 2014. Identification and Genetic Division of *Fusarium graminearum* and *Fusarium* asiaticum by Species-Specific SCAR Markers. J. Phytopathol., 162: 81-88. DOI: 10.1111/jph.12155.